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Abstract This paper deals with a novel method of continuous-time model-predictive control for
nonlinear time-delayed systems. The problems relating to time delays are solved by incorporat-
ing the Smith-predictor scheme in a control-law derivation. A nonlinear-mapping approximation,
employing either continuous piece-wise linear functions or a fuzzy system, is also an integral part
of the control scheme, and thus removes the need for output-function invertibility. An illustrative
experiment is conducted to compare the control quality in both approaches when tackling a time-
delayed Wiener-type system control.

Keywords Nonlinear predictive control · Continuous systems · Time-delayed systems · Fuzzy
systems · Piece-wise linear functions · Wiener-type model

1 Introduction

Wiener-type systems are a special class of nonlinear systems that are mainly used for modelling
nonlinear processes encountered in process industries, for example, pH neutralization processes
[16, 3] and distillation processes [17]. The large number of Wiener-system-based predictive-
control methods developed in recent years [16, 9, 12] indicates the interest in this field in the
control community. An additional difficulty is that some of the systems also incorporate pure
time delays [21] as a consequence of non-ideal situations such as non-ideal mixing and transporta-
tion time delays. This fact means that some of the ”classical” approaches are unable to reach a
satisfactory level of control quality.

Nonlinear-model predictive-control (NMPC) methods were initially developed as an exten-
sion of extremely successful model-predictive control (MPC) methods [8] based on linear models.
The key motivation was to employ more accurate nonlinear models in process prediction and op-
timization, and thus achieve better control quality for highly nonlinear processes and moderately
nonlinear processes with large operating regimes. For the state of the art of NMPC methods the
reader is referred to the papers by Morari [15] and Henson [10]. The majority of nonlinear pre-
dictive methods are based on a discrete-time representation; however, this can result in several
shortcomings in terms of relying on a system approximation and inaccurate system intersample
behaviour [13]. Moreover, a description of the system in a continuous-time domain is much more
natural, especially in the case of the Wiener-type systems. The first attempt to resolve the issues
of continuous-time predictive control was made in the 1990s by Demircioğlu [6]. The discrete-
time-based method of generalized predictive control (GPC) [5] was first of all reformulated into
the continuous-time domain for the SISO [6] and MIMO [7] systems, and then extended to non-
linear systems [4]. Our proposed method relates to these works, and also attempts to resolve the



following issues:

• Some discrete-time NMPC methods (e.g., [2, 19]) suffer from having to solve an on-line
non-convex optimization problem, which is in general computationally expensive and can
lead to solutions with local minima.

• Since the core of all model-based predictive methods is explicit-model-based optimal open-
loop control [4], the model’s accuracy plays a very important role. For Wiener models in
particular, an inadequate nonlinear-mapping approximation can adversely affect the control
quality in some operating regions.

• When dealing with time-delayed models, in the work by Demircioğlu [6] the process-model
order is augmented by incorporating the Padé approximation of the time delay into the
model. However, a model-order increase can lead to the bigger computational burden of a
control algorithm and is, in general, avoided if possible.

The proposed approach in this paper tackles the control of time-delayed Wiener-type systems
using continuous-time nonlinear model-based predictive control. The problem of pure time de-
lays is approached by estimating the auxiliary undelayed process output and including it in the
designated cost function. Thus, the original idea of the Smith predictor [20] is directly involved
in the control law, and the model order does not need to be augmented. The receding-horizon
strategy was combined with a cost function that, by adopting the ideas from predictive functional
control [22], minimizes the difference between the future-output-prediction error and the model-
prediction error. In this way the control law is closed-form optimal, and on-line optimization is
not needed. The output nonlinearity of the Wiener model is approximated by using two different
approaches: continuous piece-wise linear (CPWL) functions [11] and a static Takagi-Sugeno-type
fuzzy system (FS) [24, 1]. The FS approximation is based on the method of robust Wiener-model
identification presented by Škrjanc [23]. Unlike the methods that invert the static nonlinearity and
transform the control problem to a linear one [16, 12], here the CPWL and FS approximations are
a part of the calculation of the output prediction. This in fact raises the key questions of this paper
- how do the approximations function in an analytical prediction of the model output and what are
the effects on the closed-loop control quality?

The outline of the paper is as follows. In Section 2 the CPWL and FS functions are introduced.
In Section 3 the model-output predictions for both cases are formulated in the continuous-time
domain, and the nonlinear predictive control law is derived. Section 4 gives a comparison of
the closed-loop-control results for both cases using a simple and illustrative example. Section 5
presents the conclusions.

2 Problem formulation

Let us assume a nonlinear time-delayed continuous-time system

ẋp(t) = f(xp(t), u(t))
yp(t) = g(xp(t− Td))

(1)

where f : Rn → Rn and g : Rn → R are smooth functions, xp ∈ Rn is a vector of n state
variables, Td denotes the time delay, u ∈ R is a process input and yp ∈ R is a process output. The
process input is bounded by ul ≤ u(t) ≤ uu. An optimal-control problem is in general defined as
the design of a controller that asymptotically stabilizes a closed-loop system in such a way that the
process output, yp(t), optimally follows a prescribed reference trajectory, yr(t), according to the
given performance index. The solution of the classical optimal-control problem is difficult, and in
this paper it is avoided by use of the moving-horizon control concept [14, 5, 4]. Furthermore, the
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system’s nonlinearity presents an additional difficulty in terms of system modelling and control.
This problem can be successfully solved by using a Wiener-type system that has a special structure
that facilitates its application to model-based predictive control. The Wiener time-delayed system
has the structure of a dynamic linear block

ẋ(t) = Ax(t) + Bu(t)
v(t) = Cx(t− Td)

(2)

where A ∈ Rn × Rn, B ∈ Rn and C ∈ Rn. The variable v(t) ∈ R represents the intermediate
variable that when connected in series with a static nonlinearity forms the model output

y(t) = h(v(t)), (3)

where h : R → R denotes the static nonlinear mapping and y ∈ R is the process-model output.
Furthermore, we assume the so-called undelayed linear system, the output of which forms the
auxiliary model output containing no time delays:

ẋ(t) = Ax(t) + Bu(t)
v(t) = Cx(t)
y(t) = h(v(t))

(4)

The static nonlinearities in this paper are approximated by using CPWL functions [11] and fuzzy
systems [1]. The stress will be on investigating the differences in the performance of closed-loop
continuous-time model predictive control when the approximations are used individually in the
model-output prediction.

2.1 CPWL approximation

The process-model output using the CPWL approximation is defined as

ymp(t) = ĥmp(v(t)) = ΘT Λ(v(t)), (5)

where ΘT ∈ Rσ+1 and Λ ∈ Rσ+1. Using the CPWL approximation, any nonlinear function h can
be uniquely represented by the segmentation of its input domain. Let us consider the segmentation
into σ segments by the parameters αi, with α0 ≤ α1 ≤ . . . ≤ ασ. In addition, the elements of the
basis functions can be expressed as

Λ(v) =




1
1
2 (v − α0 + |v − α0|)

...
1
2 (v − ασ−1 + |v − ασ−1|)


 (6)

and the vector of the parameters is defined as

ΘT = [θ0, θ1, . . . , θσ] . (7)

The locations of the segments are chosen by clustering algorithms [18], and the vector of the
parameters can be calculated using common least-square algorithms.
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2.2 Fuzzy-system approximation

A fuzzy TS-type system in affine form with one antecedent variable and two consequent parame-
ters is assumed. It can be given as a set of rules in the form

Rj : if xp is Aj , then ymf = θj,0 + θj,1xc1, (8)

where j = 1, . . . , m is the number of fuzzy rules. The variable xp denotes the input or variable in
premise, and the variable y is the output of the model. The antecedent variable is connected with
m fuzzy sets Aj , and each fuzzy set Aj (j = 1, . . . , m) is associated with a real-valued function
µAj (xp) : R → [0, 1], that produces a membership grade of the variable xp with respect to the
fuzzy set Aj . The consequent vector is denoted xT

c = [1, xc1], and it implicitly represents an
additional input to the fuzzy system. The system output is a linear combination of the consequent
states. The system in (8) can be described in closed form

ymf = βT (xp)Θfxc, (9)

where the membership vector βT (xp) = [β1(xp), . . . , βm(xp)] is composed of normalized degrees
of fulfilment

βj(xp) =
µAj (xp)∑m

j=1 µAj (xp)
, j = 1, . . . , m, (10)

and the matrix of fuzzy-model parameters

ΘT
f =

[
θ1 . . . θm

]
(11)

is composed of vectors of parameters in individual fuzzy domains:

θT
j = [ θj,0 θj,1 ] , j = 1, . . . ,m (12)

In this particular case the products of the parameter vectors and the consequent vectors, θjxc,
form affine output functions. It is obvious that

∑m
j=1 βj(xp) = 1 irrespective of xp as long as the

denominator of βj(xp) in Eq. (10) is not equal to zero (which can easily be prevented by stretching
the membership functions over the whole potential area of xp).

Using the intermediate variable v(t) as the antecedent variable xp, the nonlinear output map-
ping can be written in closed form as

ymf (t) = ĥmf (v(t)) = βT (v(t))Θfxc(v(t)), (13)

where βT ∈ Rm, Θf ∈ Rm × R2 and xc ∈ R2.

3 Nonlinear model-predictive control of Wiener-type time-delayed
systems

In general the objective of a model-predictive control law is to drive the predicted future output
of a system as close as possible to the future reference, subject to the input constraints. In the
continuous-time framework this implies that the predictions of the reference and the process output
must be either known or estimated. Let us define the reference model by the triple in state-space as
Ar, Br and Cr and denote the reference signal as w(t). In the moving time frame the model-output
prediction at time τ can be approximated by a truncated Maclaurin series expansion

y(t + τ |t) = ΓT (τ)Y (t) (14)
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where the vectors Γ and Y are given by

Γ(τ) =
[
1 τ . . .

τ i

i!
. . .

τny

ny!

]T

, (15)

Y (t) =
[
y(t) y[1](t) . . . y[i](t) . . . y[ny](t)

]T
, (16)

with Y ∈ Rny , ny is the output order, and y[i](t) stands for the ith derivative of y(t) with respect
to t. Analogously, the reference-model output prediction can be defined as

yr(t + τ |t) = ΓT (τ) · r · w(t), (17)

where the vector of the Markov parameters r ∈ Rny+1 is defined as

r =
[
0 CrBr CrArBr · · · CrA

ny−1
r Br

]T
. (18)

Based on the idea of the Smith predictor, when dealing with systems containing pure time delays
the future reference must be compared to the undelayed process output. The future control error
should decrease according to the dynamics defined by the reference model

e(t + τ) = ΓT r
(
w(t)− yp(t)

)
, (19)

where yp(t) is the output of the estimated undelayed process output. Since the undelayed process
output is not available, it has to be estimated from the actual process output and the process model.
We assume that the difference between the actual and the undelayed process outputs is equal to
the difference between the delayed and the undelayed process-model outputs:

yp(t)− yp(t) = y(t)− y(t). (20)

In this sense the undelayed process output yp can be replaced by

yp(t) = yp(t)− y(t) + y(t). (21)

The idea of the proposed continuous-time MPC, referring to the predictive functional control
derivation [22], is based on a minimization of the difference between the future control error and
the difference between the predicted model output at time horizon τ, τ ∈ [0, T ] and the current
undelayed-model output:

ε(t, τ) = e(t + τ)− (y(t + τ |t)− y(t)) (22)

The control law will be obtained by minimizing the cost function

V =
∫ T

0
‖ε(t, τ)‖2dτ =

∫ T

0
‖e(t+τ)− (y(t+τ |t)− y(t)) ‖2dτ. (23)

Let us first investigate the model-output prediction (14) in the CPWL approximation case. The ith
derivative of y(t) is defined as

y[i]
mp(t) = ΘT dΛ(v)

dv
CAix(t) + ΘT dΛ(v)

dv

[
CAi−1B . . . CB

]
U(t), (24)

where U(t) stands for

U(t) =
[
u(t) u[1](t) . . . u[i](t)

]T
(25)
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and where

dΛ(v)
dv

=




0
1
2 (1 + sign (v − α0))

...
1
2 (1 + sign (v − ασ−1))


 . (26)

Because all of the higher derivatives of the CPWL mapping with respect to v are equal to 0
(d2Λ(v)

dv2 = . . . = dnΛ(v)
dvn = 0), all of the higher powers of v̇(t) are cancelled as well. This is,

however, not the case when using the FS approximation. Differentiating (13) with respect to time,
the first two derivatives will be as follows:

ẏmf =
dĥmf (v)

dv
· v̇(t) (27)

ÿmf =
d2ĥmf (v)

dv2
· (v̇(t))2 +

dĥmf (v)
dv

· v̈(t). (28)

Since the first term on the right-hand side in (28) can be written as

d2ĥmf (v)
dv2

=
d2βT

dv2
Θfxc + 2

dβT

dv
Θf

dxc

dv
+ βT Θf

d2xc

dv2
, (29)

it is obvious that, even with the assumption that the second and higher derivatives of β and xc

are equal to 0, the first term cannot be canceled, and hence the analytical definition of the output
prediction is too complex. For this reason, all the terms (v̇(t))k, k ≥ 2 are assumed to be 0, and
the prediction problem is reformulated to be very similar to the form in the CPWL case:

y
[i]
mf (t) =

dĥmf (v)
dv

· div

dti
=

dĥmf

dv

(
CAix(t) +

[
CAi−1B . . . CB

]
U(t)

)
, (30)

where
dĥmf

dv
=

dβT

dv
Θfxc + βT Θf

dxc

dv
. (31)

Let us define the control order as follows.

Definition 1 The control order in the continuous-time predictive control is said to be nu if the
following is valid: u[nu](t + τ) 6= 0, ∀ τ ∈ [0, T ] and u[i](t + τ) = 0, ∀ i > nu, τ ∈ [0, T ]
where u[nu](t + τ) stands for nuth derivative of u(t + τ) with respect to τ . The control order
defines the allowable set, U , of the optimal control input in the receding horizon frame, and hence
imposes the constraints on u(t + τ).

Remark 1 In this paper the output order ny and the control order nu are two design parameters.
However, there are some limitations in the choice of ny. If the relative order of a process is denoted
ρ, ny should be at least of the same order as nu + ρ if the nuth derivative of the control signal is
to appear in the prediction, i.e., ny ≥ nu + ρ.

The control vector U(t) of the nuth order is then defined as

U(t) =
[
u(t) u[1](t) . . . u[nu](t)

]T
. (32)

Combining equations (14)-(16) with (24) and (30), the predictions of the model outputs ymp(t +
τ |t) and ymf (t + τ |t) at time τ are defined as

y(t + τ |t) = ΓT [Py(t) + Q(v)x(t) + H(v)U(t)] , (33)
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where P ∈ Rny+1 is
P = [1 0 . . . 0]T . (34)

The matrices Q ∈ Rny+1×Rn and H ∈ Rny+1×Rnu+1 are calculated differently for each of the
approximation cases. In the CPWL case we can write Q(v) = qp(v)Kq and H(v) = qp(v)Kh,
and analogously in the FS case Q(v) = qf (v)Kq and H(v) = qf (v)Kh, where qp, qv, Kq and Kh

are defined as

qp(v) = ΘT dΛ(v)
dv

, (35)

qf (v) =
dβT (v)

dv
Θfxc(v) + βT (v)Θf

dxc(v)
dv

, (36)

Kq =
[
0 CA CA2 . . . CAny

]T
, (37)

and

Kh =




0 · · · · · · 0
CB 0 · · · 0

CAB CB · · · ...
...

...
. . .

...
CAny−1B CAny−2B · · · CAny−1−nuB




. (38)

Given the prediction of the process-model output in (33), the cost function (23) is

V (U, t) =
∫ T

0

((
w − yp

)T
rT− UT HT− xT QT

)
ΓΓT

(
r
(
w − yp

)−HU −Qx
)
dτ (39)

Notice that, taking into account the calculation in (33), the product ΓT Py(t) is equal to y(t),
and hence cancels the last term of (22). The minimization of the cost function results in the
continuous-time model-predictive control law

∂V

∂U
= −2HT

[ ∫ T

0
ΓΓT r

(
w − yp

)
dτ −

∫ T

0

(
ΓΓT HU + ΓΓT Qx

)
dτ

]
= 0. (40)

Let us define the matrix Γ ∈ Rny+1 × Rny+1 as

Γ =
∫ T

0
ΓΓT dτ. (41)

Given that the general term of the matrix ΓΓT is T i−1+j−1/((i − 1)!(j − 1)!), equation (41) can
be rewritten as

Γ =




γ(1,1) · · · γ(1,ny+1)
...

. . .
...

γ(ny+1,1) · · · γ(ny+1,ny+1)


 , (42)

where
γ(i,j) =

1
(i + j − 1)(i− 1)!(j − 1)!

T i+j−1 (43)

for every i, j = 1, . . . , ny + 1. Equation (40) is then reformulated as

∂V

∂U
= −2HT Γ

[
r
(
w − yp

)−HU −Qx
]

= 0 (44)

and, using the substitution from (21), the control vector becomes

U =
(
HT ΓH

)−1
HT Γ [r(w − yp + y − y)−Qx] . (45)
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At this point we return to the separate notation for the CPWL and FS cases and employ the notation
in (35)-(38). Let us define the first row of the matrix

(
H(v)T ΓH(v)

)−1
H(v)T Γ ∈ Rnu+1 ×

Rny+1 in the CPWL case as κp(v) and analogously in the FS case as κf (v). Now the control law
of the nonlinear Wiener-type model-predictive control is given by

u(t) = κp(v)r(w − yp + ymp − ymp)− κp(v)Qp(v)x (46)

for the CPWL approximation case and

u(t) = κf (v)r(w − yp + ymf − ymf )− κf (v)Qf (v)x (47)

for the FS case.

4 Simulation example

The proposed method was tested on a third-order linear time-delayed system

Gp(s) =
v(s)
u(s)

=
1.2

(s + 0.2)(s + 2)(s + 3)
· e−5s (48)

with a static, nonlinear output mapping

yp(t) = 4.2 · (arctan [10(v(t)− 0.5)] + π/2) . (49)

The control-design parameters were chosen as follows: nu = 1, ny = 4, T = 0.5 s, Ar = −1/3,
Br = 1, and Cr = 1/3. The choice of ny and T will be discussed later. The process input was
assumed to be bounded by the interval 0 ≤ u(t) ≤ 1, hence the intermediate-variable range was
[0, 1]. Even though the input bounds are not considered in the control-law derivation, bounding
the controller output implicitly bounds the model-output prediction and the parameters for the
control-action calculation. For the CPWL the intermediate-variable range was further divided into
five non-equidistantly spread segments. The segment-parameter positions αi, i = 1, 2, . . . , 4 were
calculated using a c-means clustering method [1]. The initial parameter α0 was set to 0 because
otherwise the derivative of ĥmp in the interval [0 α1] would be 0. However, the parameter set is
in this way augmented by 1. The optimization of the parameters Θ was carried out using linear
programming. The resulting parameter vectors are given by

α = [0, 0.176, 0.437, 0.563, 0.824],
Θ = [0.919, 0.339, 9.895, 36.441, −36.420, −9.923].

In the FS case we assumed four triangular membership functions and linear output functions, i.e.,
xc = [1, v(t)]T and Θf ∈ R4×R2. The membership function apexes were at the same positions as
in the CPWL case, i.e., αi, i = 1, 2, . . . , 4. Therefore, after completing the linear-programming
optimization, the fuzzy-parameter matrix yielded

ΘT
f =

[
0.778 −1.715 1.645 9.537
2.877 13.241 13.276 2.880

]
.

The resulting approximations ĥmp(v) and ĥmf (v) are compared to the actual mapping ĥ(v) in
Figure 1.

One way to compare the effects due to the approximation choice is to investigate the behaviour
of the open-loop model predictions in both cases. Fig. 2 shows the linear-model output prediction
dependent on ny. It is clear that increasing the value of ny improves the prediction accuracy, and
hence the prediction horizon T can easily be increased. However, in the nonlinear-model case
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Figure 1: Comparison of the CPWL and FS approximations of the output mapping using four
clusters
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Figure 2: Linear-model output prediction in terms of ny

some of the prediction error can be attributed to the approximation accuracy. Figure 3 shows
the benefit of choosing the FS approximation rather than the CPWL approximation. In all three
regions the FS prediction gives better results, even though in the FS approximation procedure the
higher derivatives of v were left out. Nevertheless, in terms of the horizon choice there is little or
no change from the linear-model case - the choice of ny is still dictated by the choice of T . In
our case if we wanted to make a fair comparison, the value of T had to be chosen so that it was
low enough for the model-output predictions to be fairly accurate. When choosing T = 0.5, a
fourth-order output prediction (ny = 4) was sufficient.

A closed-loop experiment with a series of step signals as the reference signal was conducted.
The results, presented in Figure 4, imply that the process output successfully follows the reference-
model output for the whole operating region in both approximation cases, and, at the same time,
does not suffer from the process time delay. However, it is clear that in the FS case the overall
performance is much better. In the CPWL case the reference tracking depends on the operating
point much more than in the opposite case, and in some regions the system output is subject to
oscillations. The corresponding input variables are shown in Figure 5. In the CPWL case the input
is much more oscillatory. Also notice the impulse-like behaviour of the control signals in the time
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Figure 3: Comparison of the CPWL and FS nonlinear-model predictions in terms of ny
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Figure 4: Comparison of the closed-loop-experiment results for both approximation cases

after the step reference changes - this is because a third-order system was made to closely follow
a first-order reference model.

5 Conclusion

A novel method of continuous-time model-predictive control for nonlinear time-delayed systems
was presented. In the derivation procedure the method implicitly incorporates two different static
nonlinear-mapping approximations - using continuous piece-wise linear functions and a fuzzy
system - and the solution for tackling system time delays. It was shown for the case of a third-
order system with an arcus-tangent output mapping and a considerable pure time delay that the
proposed closed-loop system in both cases exhibits quality control; however, the performance in
the FS case is clearly better due to a better model-output prediction. The proposed method is
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Figure 5: Control signals in the experiment with our proposed method

thus very appropriate for chemical processes that can be described by a time-delayed Wiener-type
system and where high-quality control is desired.
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